Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Biophys Res Commun ; 547: 23-28, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1077785

ABSTRACT

COVID-19 pandemic results in record high deaths in many countries. Although a vaccine for SARS-CoV-2 is now available, effective antiviral drugs to treat coronavirus diseases are not available yet. Recently, EGCG, a green tea polyphenol, was reported to inhibit SARS-CoV-2 3CL-protease, however the effect of EGCG on coronavirus replication is unknown. In this report, human coronavirus HCoV-OC43 (beta coronavirus) and HCoV-229E (alpha coronavirus) were used to examine the effect of EGCG on coronavirus. EGCG treatment decreases 3CL-protease activity of HCoV-OC43 and HCoV-229E. Moreover, EGCG treatment decreased HCoV-OC43-induced cytotoxicity. Finally, we found that EGCG treatment decreased the levels of coronavirus RNA and protein in infected cell media. These results indicate that EGCG inhibits coronavirus replication.


Subject(s)
Coronavirus 229E, Human/drug effects , Coronavirus OC43, Human/drug effects , Polyphenols/pharmacology , Tea/chemistry , Virus Replication/drug effects , Amino Acid Sequence , Cell Line, Tumor , Coronavirus 229E, Human/physiology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus OC43, Human/physiology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
2.
Evid Based Complement Alternat Med ; 2020: 5630838, 2020.
Article in English | MEDLINE | ID: covidwho-788245

ABSTRACT

COVID-19, a global pandemic, has caused over 750,000 deaths worldwide as of August 2020. A vaccine or remedy for SARS-CoV-2, the virus responsible for COVID-19, is necessary to slow down the spread and lethality of COVID-19. However, there is currently no effective treatment available against SARS-CoV-2. In this report, we demonstrated that EGCG and theaflavin, the main active ingredients of green tea and black tea, respectively, are potentially effective to inhibit SARS-CoV-2 activity. Coronaviruses require the 3CL-protease for the cleavage of its polyprotein to make individual proteins functional. EGCG and theaflavin showed inhibitory activity against the SARS-CoV-2 3CL-protease in a dose-dependent manner, and the half inhibitory concentration (IC50) was 7.58 µg/ml for EGCG and 8.44 µg/ml for theaflavin. In addition, we did not observe any cytotoxicity for either EGCG or theaflavin at the concentrations tested up to 40 µg/ml in HEK293T cells. These results suggest that upon further study, EGCG and theaflavin can be potentially useful to treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL